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SEISMIC WAVE PROPAGATION IN A SELF-GRAVITATING
ANISOTROPIC EARTH
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The mathematical theory is discussed of the propagation of acceleration waves in a spherical,
elastic Earth, which has spherical symmetry and the material of which is transversely isotropic
at each point with respect to the radial direction, both as a result of its intrinsic nature and as a
result of the effect of self-gravitation. An arbitrary variation of density with radial distance from
the Earth’s centre is assumed. The differential equation for the ray path is obtained and solved in
the case of an SH-wave. It is seen that the usual Herglotz—Wiechert method for the determination
of the dependence of wave speed on radial position breaks down.

1. INTRODUCTION

The mathematical theory of the propagation of seismic waves in the Earth is generally
based on the assumption that the material of the Earth is isotropic and that the stress at
every point in it, due to self-gravitation, is a hydrostatic pressure. The constitutive equation
relating the stresses and strains associated with seismic waves is assumed to be the usual
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616 K. N. SAWYERS AND R. S. RIVLIN

constitutive equation of classical elasticity theory for isotropic materials. Seismological
observations are usually interpreted in terms of a theory of this type.

Stoneley (1949) appears to have been the first geophysicist to consider the seismological
implications of anisotropy. He concluded that quite erroneous conclusions could be reached
if data obtained from seismic waves propagating in a transversely isotropic layer are
interpreted in terms of a mathematical model in which this transverse isotropy is not
properly taken into account. More recently, several investigators (e.g. Anderson (1961) and
Backus (1962)) have discussed the propagation of elastic waves in layered transversely
isotropic media. The question of whether anisotropy needs to be assumed in order to
account adequately for the observed behaviour of seismic waves has also been considered, in
general inconclusively. Some of these investigations have been described by Nuttli (1963),
who pointed out that the uncertainty of the conclusions may result from scatter in the
experimental data and from the particular method used in the reduction of the data. In all
of these investigations it was assumed that the axis of rotational symmetry of the transversely
isotropic material has the same direction at all points.

Helbig (1966) has considered the propagation of seismic waves in a spherical Earth,
which has spherical symmetry, and the material of which is transversely isotropic at each
point with respect to the radial direction at the point. In studying this problem he uses
a geometrical ray-tracing procedure.

In the present paper, we discuss the mathematical theory of the propagation of accelera-
tion waves in a spherical, elastic Earth, which has spherical symmetry and the material of
which is transversely isotropic at each point with respect to the radial direction, both as a
result of its intrinsic nature and as a result of the effect of self-gravitation. An arbitrary
variation of density with radial distance from the centre of the Earth is assumed. The
seismic waves then propagate in a medium in which there exists a spherically symmetric
state of initial stress, the initial stress at each point having transverse isotropy with respect
to the radial direction at the point. This state of initial stress resulting from self-gravitation
is fully discussed in §§ 2 and 3. The relations between the increment in the stress and the
displacement gradients due to the propagation of a seismic wave are then obtained by
systematic linearization of the constitutive equations for a transversely isotropic elastic
material subjected to a small deformation superposed on a finite deformation (see §4).
Using these expressions for the stress increment, equations of motion are obtained in terms
of the small superposed displacements.

In §5, we obtain the secular equation for an acceleration wave of finite amplitude
propagating in the Earth, using techniques introduced by Varley (1965) and Varley &
Cumberbatch (1965), and following to some extent the paper by Bland (1965). The
simplifications resulting from the assumptions that the wave amplitude is small are intro-
duced in § 6 and the resulting secular equation is solved, yielding, in general, three wave
speeds for any specified inclination of the wave normal to the radial direction at the point
considered. One of these corresponds to a transverse wave perpendicular to the plane of
propagation (SH-wave), while the other two are, in general, neither longitudinal nor
transverse. It is found in § 7 that there are generally five principal wave speeds—two corre-
sponding to longitudinal waves and three to transverse waves—in agreement with the
analysis of Green (1963).
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SEISMIC WAVE PROPAGATION 617

In §§8-10, we discuss the passage of a ray through the Earth. Only the SH-wave is
considered. In general, the other waves do not propagate unchanged in form. In §8 we
derive differential equations for the path of the acceleration wave in the form of expressions
for the time derivatives of the vector position of the discontinuity and of the unit normal to
the wave front. From these results, we obtain alternative differential equations for the path
in the form of expressions for the time derivatives of the radial distance R of the discontinuity
from the centre of the Earth and of the inclination @ of the radial direction at the point to
a fixed radial direction. o

In § 9, the equations of § 8 are used to obtain explicit expressions for the time of travel of
the discontinuity and the change 4 in the value of ¢ for specified change of R. In § 10, these
results are used to derive an expression for the derivative of the time of travel of the wave
between two points on the Earth’s surface with respect to the angle subtended at the
Earth’s centre by these points. It is found that this derivative is the quotient of the radial
distance from the Earth’s centre to the point of deepest penetration of the ray and the speed
of the wave at this point, paralleling a result obtained in the classical case of an isotropic
Earth. It is seen, however, that the classical Herglotz—Wiechert method for the determina-
tion of the dependence of wave-speed on radial distance from the Earth’s centre generally
breaks down, in the case when the material of the Earth is assumed to be intrinsically
anisotropic, or when the stresses resulting from self-gravitation are anisotropic. Thus, use
of the Herglotz—Wiechert method will lead to erroneous results for the dependence of
wave speed on radial position and possibly to erroneous deductions from this dependence
regarding the constitution of the Earth.

2. THE EQUILIBRIUM CONFIGURATION
We consider a sphere of radius R, which has a spherically-symmetric mass density
distribution, D = D(R), and which is in equilibrium with self-gravitational body forces.

The equilibrium stress is assumed to be radially- and spherically-symmetric. That is,
radial stress = 2 (R),l (21)
hoop stress = o (R), |

where, in general, 2 4 ¢. We denote this equilibrium configuration as B.
Let X be a fixed rectangular frame with origin O at the centre of the sphere. Let X, denote
the coordinates of a generic particle of B measured in X. Then the radial distance R is

(X, Xt
With (2-1) the components of the Cauchy stress tensor relative to X are
Syp = 00,5+ (E—0) Iy Jp, (22)
where Jy=X,/R (2-3)

is the unit radial vector.
The body force acting in B is taken as the usual Newtonian force. Thus, since the total
mass within a sphere of radius R is

s f "D(z)z2dz, (2+4)

76-2
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618 K. N. SAWYERS AND R. S. RIVLIN

the magnitude of the force per unit mass at this radius is
R
G(R) = 4myR-2 f D(Z) 22dZ, (2+5)
0

where y is the gravitational constant. The body force vector (per unit mass) is then

FA = ‘]A G, (2'6)
where J, is given by (2-3).
'The equations of equilibrium aret
Syp p+DFy = 0. (2-7)

Substitution from (2-2) and (2-6) into (2-7) yields the single equation of equilibrium3

X'+ 2 (E—0) = DG. (2:8)

We assume the surface traction vector vanishes on the outer surface of the sphere B. This
requires A (=9)
and, with (2-2), (2-9) yields 2(Ry) = 0. (2-10)

In the following pages X and ¢ are assumed to satisfy equations (2-8) and (2-10).

3. EQUATIONS GOVERNING FINITE DEFORMATIONS
In a deformation from the equilibrium state B the particle X, occupies position x;,
measured in X, at time ¢ and we write
x; = x;(Xy,t). (3-1)

In configuration B the material is assumed to be elastic and transversely isotropic with
respect to the radial direction. Material properties also depend upon radial distance. Thus,
the strain energy, W, measured per unit volume of B, is of the form

W= W(xi,Aa i R), (32)
where x; , is the deformation gradient computed from (3-1), J, is given by (2-3) and R is
(X, X,)%. With (3-2) the Piola-Kirchhoff stress tensor is given by §

54 = OW|[0x; 4. (3-3)

The strain energy must remain unchanged if the material undergoes a rigid-body
motion. This requirement is satisfied if W is taken to depend on «; , through the Cauchy-
Green strain tensor.

G = Xi, 4%, B (3-4)
In place of (3:2) we write W =W(G, Js R), (3+5)
and, with (3-4), (3:3) becomes 3, = 2x; (WG, (3-6)

in which W is assumed to be written as a symmetric function|| of G .

1 The notation , is used to denote the operator 9/0X ;.
1 Throughout we use prime to denote differentiation with respect to R.
§ In terms of 3, the Cauchy stress tensor is 5,; = #; 4 3y, | x|7"

| That is, 0W/3G,, = dW/oG,,.
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SEISMIC WAVE PROPAGATION 619

In appendix 1 it is shown that W depends on G, and J, through the five invariants
I, ..., I given by

I =Gy 1y =5(GugGpp—GupGap)s I3= |GAB|:} (3-7)
Ay =JJpGyp and Iy = JyJp GGy
Thus, in place of (3-5) we write
W=W(I,R) (x=1,...,5). (3-8)
With the form (3-8) for W, it follows thatf
aw oW adl, )
Gy~ 7, Wy (8:9)
where, with the aid of (3-7) we have
ol al.
’3‘@%{ = 410 B—GA%( =10, Gy
o, | G. G
3G = 2€4pQCxrm T PL VoM> (3-10)
al al,
30:1( =J;Jx and géj”;( = (GapJx+GpJy) Jp.

Substitution from (3-9) and (3-10) into (3-6) yields
N aw aw ow 10W
S = 2xi,1{{(‘371‘+11 ”3’1;) 3AK“"BEGAK‘|‘§ ‘gj;eAPczeKLMGPL GQM

d aw
S Tt G Capdit G ) Ty (311)
i, i,

The form of the dependence of W in (8:8) upon the I, is not entirely arbitrary. It is
restricted by the requirement that the stress components (3:11) coincide with (2-2) when
the body is in the equilibrium state B. In this case (cf. (3-1)) x; 4 = d;, and (3-4) and (3:7)

b
ceome Gip="04 Ii=1,=3, (3-12)
IL=1,=1I=1.
With (3-12) and the notation (cf. (3:8))
m:gTW(Z%, 3,1,1, 1, R), (3-13)

equation (3-11) becomes
S40 = 20 { (W +2Wo+W5) 84+ Wy 2W5) Ty S} (3-14)
A comparison of (3-14) and (2-2) shows that
2(M+2W,+-W;) = 0',}
2(W+2W;) = X—o.
From (3-15), 2 = 2(W 4 2W,+ W+ W+ 2W). (3-16)

(3-15)

T A repeated lower-case Greek subscript indicates summation over 1, ..., 5.
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620 K. N. SAWYERS AND R. S. RIVLIN

Substitution from (3:15), and (3-16) into (2-8) and (2-10) gives restrictions on the depend-
ence of W upon R in the configuration B.

In a deformation of the self-gravitating body, the body force changes with time. For
Newtonian (inverse-square) attraction the body force vector, per unit mass, at x; at time ¢ is

. D(Z) (z;—x;) .
fi—y f Ve e dz,dz,dz,, (3-17)
where (cf. (3-1)) %=X ( Xy ), 1 (3-18)

Z; = xi<ZA: t)a J

and where we have written Z = (Z, Z;)* for the argument of D. The integration in (3-17)
is carried out in the fixed spherical configuration B.
The Piola—Kirchhoff equations of motion aref

$,. 4+ Df; = D, (3-19)

Substitution from (3-11) and (3-17) into (3-19) yields a differential-integral equation for
the deformation (3-1).

Let K denote a surface in B with unit normal vector N,. Under the deformation (3-1)
K becomes the surface £, at time ¢. The surface traction vector acting across £,, measured

per unit area of K, is 7 —=3,N, (3-20)

2

where 3, is given by (3-11). The rate at which 7, does work, per unit area of K, is 7; %,. We
define the material energy flux vector by
Pa=—34 % (3-21)

171

By (3-21) and (3:20), —p,N, is the rate of energy flow at time ¢ per unit area of a surface
whose unit normal vector in B is N,.

4. EQUATIONS GOVERNING SMALL DEFORMATIONS

To obtain the equations appropriate to infinitesimal deformations from the equilibrium
state B, we systematically linearize the appropriate equations of § 3. This is conveniently
done by rewriting (3-1) in the form

X = Xpt+eup(Xy, 1), (4-1)
where ¢ is regarded as a small constant whose square may be uniformly neglected. In this
section equations will be written correct to the first order in ¢ without specific mention in
each case that higher order terms have been neglected.

Using (4°1) in (3-4) we have
Gup = Ogpte(uy ptuy 4)- (4-2)
We write I,=1+el, (x=1,...,5), (4-3)
[ 3 (OC =1, 2)) 1
1 (x=3,4,5).

1 A superposed dot denotes the operator 0/0x.

where (cf. (3-12)) 10 =
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SEISMIC WAVE PROPAGATION 621
Substitution from (4-2) into (3-7) yields, with (4-4),

Iy = 2u, 4, I = duy 4, 73:2”/1,/1,1

- - 4:5
I,=2J,Jyu, 5 and Ijy=4J,Jyu, 5. (4:5)
We introduce the notation (cf. (3:13))
>*wW
Wop=Wg= ar i, (3,3,1,1,1,R) (a,f=1,...,5) (4-6)
and write IW|ol, = W,+eW, 415, (4-7)

where W, is given by (3:13).
For use in the stress equation (3-11) the following quantities are computed by using
(4:1) to (4-7):

aw aw
2%p k (”gjl‘ ”|"113—]2) O = 2(W, 4 3Wj) 845+ 2e(W, + 3W) 3AL53K”K,L

+46{0,4 50, (W + Wiy W o+ W3+ 6Woy -+ 3W,3)
+ 045 S S (Wig+2W 5+ 8Wou+ 6Wos) buy 1,
ow
2% ,K"*B*I; G i = 2W, 0,5+ 2eW, 5AL33KUK,L‘|‘ 26W,(0 4501+ 041, 0px) Ug L
+46{0,5 0L (Wia+2Way+Wos) +0up I I (Way+ 2I/V25)}uK,L)
€4PQCKIM Gpy, GQM = 2W; 0,5+ 2¢W; 5AL33KuK, L—2eW; (3AK33L“|‘5AL33K)
+46{0,15 0, (W3 + W3-+ 2Wo3 -+ W)
+3ABJKJL(M/:;4+2VV35)}HK,L7
aw
2”19,1("374 Sy = 2W,J Jp+ 26W:1JAJLaiﬂ(uI(,L
+de{ Sy Jp O, (Wig+2Wou +Wyy) + Iy Jp I J L (W + 2%5)}”1(, L
ow
QxB,KW; (GypIg+GypJy) Jp = 4W ‘];4JB+46M/5‘];4JL3BKuK,L
+2eW{0yx Jp I+ Ty S Op 1 041 Jp S+ I J1.0k} Ug, L
+ 86{Jy Jpxr (W5 +2Wos+ W)

ow

xB,K‘gjg

+ Iy Sy I I (Wis +2Wi5) buge 1 (4-8)
Substitution from (4-8) into (3-11) and use of (3-14) yields
545 = Sapt6(Sur0px+ Copxr) Ug . 1 (4-9)

where §; is given by (2-2) and where
Cuprr = C10up0ir+ Co(0axdp1+0410510) + C3(Oap Sic Iy + i Spdicr)
+ CoOuscTp I+ Ju I Op1+ur Ty It Ja 1 0p) + Cs Iy Jp I T, (410)
in which the C, are functions of R defined by
Cy = 4(Wy Wy Wi+ a1+ 20+ a4+ W),

Cz = _Q(I/VZ_‘_M/;»): Cs = 4(M/14+2VV15“|‘2%4+4M5+M4+QM5)> (4'11)
Cy=2W; and C; = 4(Wyy+4W5+415;).
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622 K. N. SAWYERS AND R. S. RIVLIN
From (4:10), C,py; has the symmetries of the classical elasticity tensor; i.e.
Cusxr = Cpaxr = Caprx = Ckras- (4-12)
The appropriate expression for the body force is obtained by replacing (3-18) by (cf.
4-1
(4-1)) xp = Xyteup( Xy, t),} (13)
zp = Zy+euy(Zy,t),
and by substituting from (4-13) into (3-17). This yields
Jp=Fyteky, (4-14)
where (cf. (2-6))
D(Z) (Z,— X3) ,
F:yf 2= 47 47,4z, — —J,G,
g s{(Z,— X)) (Z,—X ) ? (415)

_ D(Z) {uy(Zg,t) —uy (X, 1)} o, (24— (Zy—Xp)
fo= ny {(Z,— X)) (Z,—X)p {843 i (Zy—Xy) (ZM_—XM)} d2,dz,dz,

Substitution from (4-1), (4-9) and (4-14) into the equations of motion (3-19) yields
SAB,A +6(S4208x+ Cypr) Uk, 1.4 +6(S42 085+ Cypxr) ,AuK,L+DFB+6DF = ¢Diiy,
or, since (cf. (2:7)) Syp 4+ DFy = 0, this becomes
(842085t Capxr) U, 1a+ (SarOsxct Capxr) , athc, 1+ D Fy = D, (4-16)

These are the equations of motion governing infinitesimal deformations from the equi-
librium state B. In (4:16), S,; is given by (2-2), Cpx; by (4:10) and Fy by (4-15).,.
From (8-21), with (4-1), the material energy flux vector is

by =—6Sptp (4-17)
Substitution from (4+9) into (4-17) yields
Dy =—685tp—6(S, 1 0+ Cpxr) U, 1, Up- (4-18)

5. FINITE ACCELERATION WAVES

Across an acceleration wave front the acceleration #; suffers a jump discontinuity as the
particle X, is traversed by the front while (cf. (3:1)) x;, #; and x; , remain continuous.

Following Varley (1965) we replace (X, ) by new independent variables (X, ¢) where
¢ = D(X,,t) is continuously differentiable and such that ¢ = 0 yields the material descrip-

tion of an isolated acceleration wave front.T The unit vector normal to ¢ = constant is
Ny = (I),A/((D,Kq),l()%a (51)
and the speed of propagation of this surface, relative to material in B, is given by
V=—-@/D D )t (5-2)
Throughout this section we assume that @ (and, hence, V) is not zero.

t Attime ¢, the locus ®(X,,¢) = 0 is a smooth surface in the reference configuration B. Letting X} and X
denote points on opposite sides of this surface, then for all X, on ®(X,,t) = 0, #(X],¢) and #/(X},¢)
approach definite limits as X — X, and X; - X, but these limiting values of & are not equal.
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SEISMIC WAVE PROPAGATION 623
For any function (X, t) we define (X}, ¢) by
F( Xy, 8) =f(Xps 8 (X 9)), (5-3)

where ¢(X,,#) is defined implicitly by the relationship ¢ = ®(X,,¢{). On a surface

¢ = constant, . %
(D’B+(D3_X; == O,

& _N,

or using (5-1) and (5-2), =2, 54
g (51) and (5:2) it (54)
Differentiating (5-3) with respect to Xy and using (5-4) yields
F,B :f,B+fNB/V' (5'5)
It is convenient to introduce functions p;, and v, for a motion x;(X, t) by the definitions
piA:',.ci,/D} (5'6)
Ui = xi.

These quantities satisfy the compatibility relation
bia= Vi, 4 , (6:7)

The counterparts of (5:3) for p;, and v; are P, and V, respectively. Thus, on a surface
¢ = constant we have, using (5°5),

Pz‘A,B ZPiA,B‘I”ﬁiAMB/V:}

\ (5:8)
Vi,a= i, at0; N[V

1
At the acceleration front, ¢ = 0, we note that P,, and V}, regarded as functions of X, are
continuous. Further, since P, ; and V; , are derivatives interior (tangential) to the wave
front, they are continuous at ¢ = 0. We denote the jump in a function f(X,,t) as X is
traversed by the wave at time ¢ by [ f]. From (5:7) and (5-8) follow

[£id = [v; ,A]a

[£:4 ,B] +[ial N/ V =0, (59)
[v;, A+ [0 N,/ V = 0. '
These equations yield [pia, 8] = [0:] Ny Ny V2,
or, with (5+6), we obtain the known result,
[%:, 48] = [%:, pal = [Fi] N, Np/ V2. (510)
At an acceleration front the equations of motion (3-19) yield
I3, +[Df:] = [D#]. (5:11)
From (3:-3), with W given by (3-2), we have
. W n AW dJy n W IR
M4 G Oy BT Ok, 00y 0X, ' Ox; 4OR 9X°
5 4 .
so that [$4i,4] = 0; 0% 5 [%%, 4l (5:12)

77 Vor. 263. A.
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624 K. N. SAWYERS AND R. S. RIVLIN

where it is assumed that W has continuous second derivatives. Assuming that the mass
density D is continuous, it follows from (3:17) that f; is continuous so that [Df;] = 0.
Therefore, with (5-12), (5-11) becomes

oW
Tx. Aélx"‘ [xk BA] = D[x] (5'13)

Using (5-10), (5-13) yields
- EAI;I;»MN N,— DVZc?lk} [#] = 0. (514)

Equation (5-14) is the material form of the propagation condition for an acceleration
wave. According to this, the amplitude [#;] must be an eigen-vector of the (symmetric)

material acoustic tensor 2w
Gir, = G Or ~ N, N. (5-15)
i, A"k, B
The speed of propagation, V, must be such that DV? is the corresponding eigen-value.
From (5-14), possible speeds of propagation of acceleration waves are solutions of the

secular equation |G —DV2,| =0, (516)

where §;, is given by (5-15). We note that [%;] and V depend on the (material) direction of
propagation{ N,.

Material immediately ahead of a wave front may be undergoing any smooth deformation
which is consistent with the equations of motion (3-19). In particular, suppose the material
has always been in configuration B prior to time ¢ = 0. At ¢ = 0 imagine that some portion
of the outer surface of the body is suddenly accelerated. In principle this would give rise to
an acceleration wave propagating into the interior of B. Motion of material particles behind
the wave front would alter the body force, instantaneously, throughout the entire body in
accord with (3-17). Hence, the material particle X, would generally be in motion prior to
the arrival of the front at time £ That is, due to the presence of self-gravitating body forces,
we would generally expect that (cf. (3-1))

x; 0, X, X +0 and wx; , 40, (5:17)

at the wave front. If inequality (5-17); holds it follows that the stress (3-11) is not identical
with (2-2) at the front. It is apparent that an analysis of the effects due to self-gravitational
body forces on conditions which exist at a wave front could be made only after an accelera-
tion wave solution had been established. We shall not attempt such an analysis in the
present paper.

1 The relation of (5:15) and (5-16) to corresponding equations given by Truesdell (1961) is furnished by
the correspondence between spatial and material representations of propagating surfaces. In the spatial
representation a wave front has unit normal #n; and local speed of propagation v where (see appendix 2,
equation (12-10)) N,/V = n;x; ,/v. Thus, using (5-15), we have

Tl V? = qyfv?
oW
where it = Gy ,0sg  1-a%L0"

is the local acoustic tensor, The counterpart of (5-16) is
|qix—Dv?0y| = 0.
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SEISMIC WAVE PROPAGATION 625

As has been pointed out by Truesdell (1961), body forces do not affect the propagation
condition (5-14). Whatever the value of x; , may be, the amplitude [#;] of an acceleration
wave which propagates in the (material) direction N must be an eigenvector of §;; with
(cf. (5:15)) *W]ox; 4 0%, pevaluated atx; .

If the form (3-5) for W is used an alternative expression for §;, is obtained. From (3-5),
with (3-4), we have

>2W 2w >W

ALY RN X o (5:18)
Using (5-18), we obtain from (5-15)
ow >wW :
G = {26, +dx; px N, N, 5-19
Yix { % 9G PkQaG“)aGBQ ( )

Equation (5:19) does not reflect explicitly the fact that the material of B is transversely
isotropic. We can obtain an expression for ¢;, which does so by substituting in (5-19) the
expression (3-5) for W. From (3:5), we have

W oW dl,
G,y oL, Gy
W ew oL, oy, ow &I

a

0Gp0Cg L, 0L, 9 1y 3Gy 0L, 8GypiGry’

(5-20)

The form for §;, obtained by expanding the derivatives appearing in (5-20) and substituting
into (5-19) will not be displayed here.

If, at a particle X, the instantaneous value of x; ,is d;, as a wave passes, then conditions
(3-12) hold. It follows that the stress is (cf. (3:6) and (2-2)) '

ow
Sip= 2= 5:21
4 aGAB Gap=04p ( )
In addition, it is easily shown that
2w
4: e = C ) 5'22
3GAP BGBQ Gap=04p s ( )

where C,pp, is given by (4-10). From (5:19), with (5-21) and (5-22), we have
Tir = {3ikSAB+3iP3kQ CAPBQ} NN, : (5-23)

which is identical with the linear acoustic tensor to be derived in the following section
(cf. (6:5)). Hence, in the special case when material at a wave front is in the state of stress
Syp (i.e. when x; ,=J;,) the propagation condition for finite acceleration waves is equi-
valent to that obtained from linear theory.

6. THE SECULAR EQUATION FOR SEISMIC WAVES AND ITS SOLUTIONS

The usefulness of linear elasticity theory in describing seismic wave transmission has been
well established. In this section we shall combine results from §§ 4 and 5 to obtain the speeds
of propagation of seismic waves for the body B.

77-2
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626 K. N. SAWYERS AND R. S. RIVLIN

We assume the motion (4-1) is that associated with the propagation of an acceleration
wave. That is, u, 4 and uy_; are continuous throughout B for all time # while the accelera-
tion g suffers a jump discontinuity as the wave front traverses the particle X, at time £. At
points other than on a wave front, (4-1) yields

X, pa = 6l 14 and  Fg = ei. (6-1)

At points on a wave front, (6-1) and (5:10) show that discontinuities in second derivatives
of the displacement satisfi

P Y [k, 2a) = [ig] N NV, (6-2)

where N, and V" have the same meanings as in §5; i.e. N, is the material unit normal vector
to the wave front and V'is the speed of propagation relative to material in B.
Since u; and u, ; are continuous, the equations of motion (4-16) yield

(S42.08x+ Caprr) [k, 4] = Dliig], (63)
where it is assumed that the coefficient of % _; in (4:16) is continuous. From (6-2) and (6-3)
i follows that (Qox—DV?855) ] = 0, (6-4)
where Qsx = (Sar0sx+ Casxr) Na N, (6-5)

is the linear acoustic tensor. In view of (4:12), @« is symmetric. Substitution from (2-2) and
(4:10) into (6-5) yields the explicit form for the linear acoustic tensor:
Qpx = {(Co+0) + (Cy+Z—0) (J;Ny)*} Opxct (Cy+ Cy) Np Ny
+ (Cs4C) (S Ny) (Np Tyt Tp Nie) H{Cy+ C5(Jy Ny)* Jp Sy (6:6)
Equation (6-4) is the condition which must be satisfied by the acceleration discontinuity

[é@g]. It is the linear counterpart of (5-14). Since, by assumption, [i] # 0, (6-4) yields the
secular equation for seismic waves,

| Q=D V0| = 0. (6:7)
Introducing (6-6) into (6-7) and expanding the determinant, we obtain the solutions
DV?=H,,
1] (6:8)
or DV? = }{H,+ Hy L [(Hy— H,)?—4H;]'}, )
where
Hy = Np No{0po(Cs+0) + Jp Jo(Cy+ 2 —0)},
Hy = Np Ny{0po(C, 4205+ Cy+-0) + Jp Iy (2C54-3C, + C5+ 2 —0) }, (6-9)

Hy = NNy Np Ny {0101, Co(Cr 4 Co) + i 1 [ G5 (Cr+ Co) — (C+Co)*1} g — o J) -
Equations (6-8), with (6-9), give explicit forms for the squared speeds of propagation of

seismic waves in terms of the mass density D, the initial stresses 2 and ¢, the elasticities
Cy, ..., C5 and the unit normal vector N,.

7. PRINCIPAL AND GENERAL SEISMIC WAVES
Since the material of B is transversely isotropic with respect to the radial direction at
every point, it follows that the radial direction and directions perpendicular to it are
preferred directions with respect to the propagation of waves. We call waves which propagate
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SEISMIC WAVE PROPAGATION 627

along these preferred directions principal waves. Consequently, the unit normal vector N,
associated with a principal wave satisfies either

Ny==+J;, or NJ,=o. (7:1)

It is convenient to let @, denote the acceleration discontinuity [4,]. With this change the
propagation condition (6+4) becomes

(Qpx—D V) ax = 0. (7-2)

Throughout we assume that a; is not the zero vector, i.e. azag = 0. A wave is called

longitudinal or transverse according as its amplitude a, satisfies the relations

a,= (agNg) N, or a,N,=0, (7-3)
respectively.
A detailed discussion of principal and general waves is given in the following six
subsections.

(1) When Ny=+J,
If N, = 4+ J, equations (6-9) become
Hy = Cy+Cy+ 2,
H, = C,+2C,+2C;+4C,+ C5+ X, (7-4)
H;=o0.
From (6-8) and (7-4), the squared wave speeds are
V2= D= (Co+Cy+2),
V2 =D"YC,+2C,+2C;+4C,+C,+ X)), ' (7-5)
V2 =D"YC,+C,+2).
Introducing N, = £J, in (6:6) and substituting the resulting expression for Q. into
(7-2) yields
{(Cy4Cy+ 2 —DV?) bgg+ (Cy + Cy+2C5+ 8C,+ C5) Ny Ny age = 0. (7-6)
Substitution of the three values of V2 from (7-5) into (7-6) yields, respectively,
(Cy+Co+2C5+3C,+Cy) Ny(Ngay) = 0,
(Cy+Co+2C5+3C,+ C5) (NpNy— ) ai = 0, (77)
(Cy+Cy+2C;+3C,+ C5) Ny(Ngak) = 0,
where we use superscripts 1, 2 and 3 on the amplitude vectors g to distinguish the three
different cases.
We define V] and v, by
Vi=D"1C+2C,+2C;+4C,+Cs+ X)), 78
# = DGyt Cy+-2), ")

and note that '} is the squared speed given by (7-5), and that  is the squared speed given
by (7-5); and (7-5)5. From (7-8),

(Cy+ 4203 +3C, 4 C5) = D(Vi—ei). (7-9)
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628 K. N. SAWYERS AND R. S. RIVLIN

In the sequel we assume that V¥ = v}; i.e. with (7-9),
(C,+Cy+2C5+3C,+Cy) == 0. (7-10)

Thus (7-7),, with (7-3),, (7-8), and (7-10), implies that V'} is the squared speed of longi-
tudinal waves which propagate in the radial direction; and (7-7), 5, with (7:3),, (7-8), and
(7-10), imply that v} is the squared speed of transverse waves which propagate in the radial
direction.

(il) When N,J, =0
If N,J, = 0 equations (6:9) become
H, = Cy+o,
H, = C+2C,+C,+o0, (7-11)
Hy = (Cy+C,) Cy.
From (6-8) and (7-11) the squared wave speeds are
V2= D"YCy+0),
V2= D"YC,+2C,+0), (7-12)
V2= DYCy+Cy+0).
Introducing the condition N,J, = 0in (6-6) and substituting the resulting expression for
Q px Into (7-2) yields '
{(Cot0—DV?) Opgt (Cy+Cy) Ny N+ Cy Ty Jihay = 0. (7-13)
Substitution of the three values of V2 from (7-12) into (7-13) yields, respectively,
{(CL+Cy) NyNy+CyJyJy}ak =0,
{(CL4+Cy) (NyNy—0pp) +Cy Iy Iyt a5 = 0, (7-14)
{Ci(Jp I —0px) + (C1+ Cg) Ny Ni}ag = 0,
where, again, superscripts are used on 4, to distinguish the three different cases.
We define V,, v, and v; by V3 — D1(C,+2C,+0),
— D Y(Cy+Cy+0), (7-15)
v§ = DY,y +0),
and note that 7, v§ and 13 are the squared speeds given by (7:12),, (7-12); and (7-12),,
respectively. From (7-15) it follows that
(C,+C,) = D(Vi—uv3) ,1
(Cy+Cy)—C,y = D(Vi—13).)
We shall assume that (C,+C,) =+ 0,1
(Ci+Cy)—Cy 0,
or, equivalently (cf. (7-16)), V} == 1 and V3 4 3.

To solve (7 14) for a we multiply it by J, and recall that J, Ny = 0. Thus, with (7 17),,
we deduce Jai = 0. Using this in (7:14),, together with (7-17),, we find that aj = (a% Ny) V.

(7-16)

(7-17)


http://rsta.royalsocietypublishing.org/

A
2N

/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/A \

I §

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SEISMIC WAVE PROPAGATION 629
Hence, (7-3), and (7-15), imply that VZis the squared speed of propagation of longitudinal

waves which propagate in directions perpendicular to the radial direction.
To solve (7-14), and (7-14), for a% and a} we multiply those equations by Ny, recall that
{(C1+Cy) —C} Nya§ = O-J
Thus, by (7-18), (7:17), (7:15), 3 and (7:3),, it follows that v and 5 are squared speeds of

propagation of transverse waves which propagate in directions perpendicular to the radial
direction.

If we use the fact that (cf. (7.18)) Nyak = Nga§ = 01in (7-14), and (7-14),, we obtain
CyJp(Jxax) = 0>1

(7-18)

. (7-19)
Cy(JpJ—0px) ag = OaJ v
respectively. From (7-15), C, = D(v3—1}). (7-20)
Hence, if C, 4= 0 we have v3 = ¢3. In this case equations (7-19) yield
Jypat =0,
o | (7-21)

ay = (JKG?() JB'J

From (7-18),, (7-21), and the fact that J,N, = 0, it follows that the vector 4} may be

written as
ap = (aﬁeAPQNPJQ) epxr Ny J- (7-22)

By (7-22) and (7-21),, the amplitude vectors a4 and 4 of waves governed by speeds v4 and v3,
respectively, are mutually perpendicular provided C, = 0.

(111) A discussion of principal waves
In §§7 (i) and 7 (ii) it has been shown that (cf. (7-8) and (7-15))
V= D"I(Cl+202+203+4C4+05+2)1

7-23
and V3 = D=Y(C,42Cy+0) J (7:23)
are squared speeds of principal longitudinal waves{ and that
v} = D7H(Cy+-Cy+-2),
13 = DY Cy+Cy+0) (7-24)

and v} = D 1(Cy+0)
are squared speeds of principal transverse wavest provided (cf. (7-10) and (7-17))

(C1+Cy+2C5+3C,+C5) + 0,
(C1+Cy) = 0 (7-25)
(C1+Cg)—Cy + 0.

T Strictly speaking the word wave applies only if the corresponding squared speed is strictly positive.
Hayes & Rivlin (1961) have pointed out that if a squared speed were negative, then corresponding small
disturbances (arising, for example, from Brownian motion) would build up exponentially with time and
the material could not exist in the equilibrium state B. In a private communication Dr E. Varley has indi-
cated that vanishing transverse wave speeds may occur at the interface between two solid phases, in an
inhomogeneous stress field.
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630 K. N. SAWYERS AND R. S. RIVLIN

Further, if C, = 0, amplitude vectors a, associated with transverse waves which propagate
in directions perpendicular to the radial direction (i.e. N;J, = 0) are in the directions
(cf. (7-21), and (7-22)) Jp and 655, NS,

These results indicate that there are, at most, five distinct squared principal wave speeds
at every point. An interesting interpretation can be given to the difference between two of

them. From (7-24), and (7-24),, S—o = D(vi—0}). (7-26)

We recall (cf. (2-2)) that (X' —¢) is a quantity which measures the departure from isotropic
stress conditions in the equilibrium state B. By (7-26) this stress difference is given directly
in terms of the mass density D and the difference between two squared principal transverse
wave speeds. In the special case when X' = ¢ we remark that all results obtained in §§7 (i)
and 7 (ii) remain valid. The only change which occurs if the stress in B is isotropic is a
reduction from (at most) three to (at most) two distinct transverse wave speeds.

If it happens that C;, = 0 and X' = ¢, (7-24) with (3-15) and (4-11), shows that

Wy=W;=0
and v} = 0} = v} = D YCy+0) = 2D YW+ W,).
Also, equality of the three squared principal transverse speeds implies that C; = X' —¢ = 0.

In this case (7-23) yields V32—V = D120+ Cj).

Since (cf. (4:11)) Cy and C; depend only on the second derivatives of I (evaluated in B)
it follows that the squared principal longitudinal speeds may differ even though v} = 13 = 3.
Conversely, if Vi = V3, (7-23) yields

2C;+ Cy+4C,+ X —0 = 0,
or, with (7-20) and (7-:26), 2C;+ C;+D{313+40v}—4v3} = 0.

From this we see that equality between V{ and V3 does not, in general, imply that the
squared principal transverse speeds are equal.

(iv) Non-principal transverse waves

In this section we consider waves which propagate with speed 1 given by (6-8),. Let a,
be the amplitude vector for such a wave. Substitution from (6-8),, (6:9), and (6-6) into (7-2)
yields

Nyar{(Cy+Co) Ny+ (Cs+Cy) (JpNp) S}
+ Tt d(C3+C) (Jp Np) Np+[Cy+C5(Jp Np)* S} = 0. (7-27)
We introduce the quantity € defined by
Q=N,J, (7-28)
Since N, and J, are unit vectors, {2 satisfies the inequalities

-1<Q<1. (7-29)
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SEISMIC WAVE PROPAGATION 631

Multiplying (7-27) alternately by N, and J, and using (7-28) leads to the system of
homogeneous equations

Nyag{(C1+Cy) +Q(Cs+ C )} Ja{(Cs+2C,) + Q2 Q = 0,}
Nyag(Cy+Cy+ Cs+Cy) Q+ Jrar{Cy+ Q2 (C3+ Cy+C5)} = 0.
Directly from (7-30), the determinant & of the coefficients of (Ngay) and (Jxay) is found to be

(7-30)

0 ={C,(C,+Cy) + QY C5(C, + Cy) — (C3+Cy) 2]} (1 —Q32). (7-31)
If Ny =4J,, (7-27) reduces to (7-7);. Then, from the discussion in §7 (i), we have
Nyax=0 when N,=4J, (7-32)
hy :}//

>

A4 / hy = Cy(C+Cy)
N by = C5(C;+Cy) — (C3+Cy)?

Freure 1. Shaded regions of the %, &, plane indicate values of %, and %, for which
& % 0 for all Q2 in [0, 1].

When N, = +J,, (7-28) and (7-29) show that 2 satisfies the condition 0 < Q2 < 1. In
this case (cf. (7-31)) 8 = 0 if and only if § = 0, where

§ = Cy(Cy+Cy) + QC5(C+Cy) — (G +Cy) (7-33)
For the following discussion we define %, and 4%, by
hy = Cy(C,+C,y),
1 1(C1+Cy) 2} (7-34)
hy = C5(Cy+Cy) — (C5+Cy)?
and rewrite (7-33) as 8 = hy+Q2h,. (7-35)

We seek to identify conditions under which 8 + 0 for all values of Q2 satisfying 0 << Q2 < 1.
It is easily seen from (7-35) that 0 = 0 for all Q?in [0, 1] if and only if one of the following
four sets of conditions holds: (1) &; > 0, ky, = 0; (2) £ > 0, hy <0, hy > |hy|; (3) A, <O,
hy > 0, || > hy; or (4) hy < 0, hy < 0. The range of possible values of %; and £, for which
8 & 0 is indicated by cross-hatching in figure 1. We note that § = 0 only if %, = 0. Since
(cf. (7-17),) (Cy+C,) == 0, (7-34),shows that z; = 0 ifand only if C;, = 0. Then, from (7-20),
h, = 0 if and only if the two squared principal transverse wave speeds v and v are equal.
Thus, a necessary condition that 8 = 0 is v} == v3. As indicated above, sufficient conditions

78 VoL. 263. A.
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632 K. N. SAWYERS AND R. S. RIVLIN

which ensure that § # 0 involve 4, given by (7-34),. Unlike 4,, there is no obvious simple
relation by which %, can be expressed in terms of principal wave speeds.

Motivated by the discussion in the preceding paragraph, we say the material at radius R
in B is definite transversely isotropic (d.ti.) if and only if the quantities C,(C;+C,) and
Cs(C,+C,) — (C3+C,)2, evaluated at R, are such that (cf. (7:33)) 8 = 0 for all Q*in [0, 1].
In this case the only solution to the system of equations (7-30) is

Nyag=0 and Jgag=0. (7-36)

Thus, when the material is d.t.i. (7.36), and (7-32), with (7-3),, show that waves governed
by the speed (6-8), are transverse for all directions of propagation. Further, the amplitude
vector, a,, for such waves is perpendicular to the radial direction.

(v) Other non-principal waves

In this section we consider waves which propagate with speeds V given by (6-8),. Let

a} and ay, respectively, denote amplitude vectors for waves associated with the (+) and(—)

speeds of (6-8),. When it is convenient to consider both types of waves simultaneously, we

write a%.

In the case when N, = 4-J,, the results of §7 (i) apply. We simply replace 4% and a3 by
a} and ay, respectively. Thus, from (7-7), with (7-10),

af = (Nyat) Ny

7-37
Nyax=0. j (7:37)

From (6-6) and (6-9), it follows that

Qi = Hi Byt (o4 Cy) Ny Nyt (Cy ) QN T+ Ty Ng) £ (Cyt G ) Ty T, (7:38)
where Q is given by (7-28). Substitution from (7-38) into (7-2), with DV? given by (6-8),,
leads to the equation
H(Hy—Hy) + [ (Hy— Hy)*— 4Hy)¥} a; = Ny{(Cy +Cy) Nyag +Q(Cy+Cy) Jxag}
+ J{Q(C5+ C,) Ngag + (C,+Q2Cy) Jax}.  (7-39)
Results which apply when N, = 4-.J, are indicated in (7-37).

When Ny = 4= Jy, €5pg NpJ, is a (non-zero) vector perpendicular to the plane of N and Jj.
Forming the inner product of this vector with (7-39), we obtain

H(H,—H,) & [(H,— H,)*— 4H;)} af 65pg Np Jp = 0. (7-40)
Thus, providing (Hy,— H,) +-{(H,— H,)?—4H,}* = 0, (7-41)

equation (7-40) implies that a} and ay lie in the plane of N, and J,.
We define 4+ and 2~ by
ht = (Hy,—H,) +{(H2“‘f[1)2_4H3}%:}

h™ = (Hy,— Hy) —{(Hy— H,)?— 4H,}}. (742)
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SEISMIC WAVE PROPAGATION 633

It will now be shown that H; + 0, if and only if 2* == 0 and 4~ =+ 0. Suppose A+ & 0 and
h~ = 0. Then A*h~ = 0. From (7-42), h*h~ = 4H;. Hence, H; < 0. Now suppose H; = 0
and i+ = 0. From (7-42), we have

(Hy—Hy) = —{(H,—H,)*— 4H}t,
and by squaring both sides of this equation we obtain the contradictory result Hy = 0.
A similar contradiction would be obtained by using (7-42), if we were to assume 4~ = 0

instead of 4™ = 0. Thus, H; + 0 if and only if 2" = 0 and /4~ & 0.
From (6-9); we have

Hy = {Cy(Cr+Co) + Q[ C5(Cr+ o) — (C3+ )} (1—-Q%), (7-43)
where  is given by (7-28). A comparison of (7-43) and (7-31) shows that H; = 4. Thus,
when Q2 < 1 (i.e. when N, & +J,), H, # 0 if and only if § & 0, where & is given by (7-33).
Using the theorem proved in the preceding paragraph together with (7-40), (7-41) and
(7-42) we see that if the material is d.t.i., |

af egpgNpJyg =0 when N, =44 J,. (7-44)
In this case (7-44) shows that the amplitude vectors a and a; associated with waves which

propagate with (+) and (—) speeds, respectively, given by (6-8), lie in the plane of N, and
Jy, provided that N, == 4-J,. -

(vi) A discussion of non-principal waves
In §7 (iv) it has been shown that waves governed by the speed V, where (cf. (6:8), and
(69),) V2 = D-Y(Cy+0) +Q2(C,+Z—0)}, (7-45)

are transverse for all directions of propagation and that the amplitude vector a, for such
waves is perpendicular to the radial direction if the material is definite transversely isotropic
(d.t.i.). We recall that material at radius R is d.t.i. if and only if § 4= 0 for all Q2 in [0, 1]
where 0 is given by (7-33).

In §7 (v) we have shown that waves governed by the (4) and (—) speeds V given by
(el (6:8):) V2= §DNH, + Hyzx [ (Hy— Hy)* — 4Hy 1) (7-46)

have amplitude vectors ¢} and a3 which lie in the plane of N, and J, (provided N, = 4-J,)
if the material is d.t.i. When N, = +J, (cf. (7-37)) a} is parallel to and a; is perpendicular
to N,.

It is apparent from (7-39) that for a general direction of propagation N,, the amplitude
vectors a} and aj are neither parallel to nor perpendicular to N,. Thus, in contrast to waves
governed by the speed (7-45), waves which propagate with speeds (7-46) are, in general,
neither longitudinal nor transverse.

8. THE MOTION OF TRANSVERSE WAVE FRONTS
In this section we shall derive equations which describe the motion of the transverse waves
discussed in § 7 (iv). Combining (6-8), and (6-9), yields

Cy+o C4—|—Z'—~(r}. (8-’1)

78-2

V2= N,N, {3PQ_D_+JPJQ s
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634 K. N. SAWYERS AND R. S. RIVLIN

Itis apparent from (8-1) that the speed ¥ is a homogeneous function of first degree in the
components of the unit normal vector N,. Thus, the method of description developed in
appendix 3 may be used. Substitution from (8-1) into (13-1) yields

dX, 1(Cyto,  CotZ—0

@ - V{ p Nt QJA}’
av, 1 c Ct+X (8:2)
sV, S _ 2+‘7), 2 2(u)'}
a — oy a2 JA){( D) TR T mp ) )

where, we recall, Q=JN, J,=XJR R=(X,X,)} (8-3)

and where we have used the fact that 2, ¢, D and the C, are functions of R only. From (8-1),
ith (8-3 h :
with ( )1, we have 02+0+Q2 C4—I—2—-0'}§
D D '
Since V enters the secular equation (6-7) only as V2, the sign () in (8-4) is not determined.
For definiteness the positive sign will be used uniformly throughout.
Appropriate initial conditions for the system (8-2) are of the form

X4(0) = Xy(a,0) and N, (0) = Ny(a, b), (8:5)

V= j:{ (8-4)

where a and b are suitable parameters which describe the position of the wave front at time
t = 0.7 The solution of the six equations (8-2), subject to initial conditions (8-5), provides
a detailed description of the motion of a transverse wave front.

In a sense the information provided by the solution of (8-2) contains too much detail for
our purposes, and it will be shown presently that sufficient information can be obtained by
considering a reduced system of equations.

We shall first prove that the motion of a point, obtained as a solution to (8-2), lies in a
diametral plane of the spherical body.

Let P denote a point on a wave front at the instant ¢ = 0. We choose the reference frame X,
as may be done without loss of generality, so that the X, X,-plane contains the point P and
the wave normal at P.} In this system X;(0) = N;(0) = 0 at the point P. We note that
X, = N; = 0 satisfies the system (8-2), with 4 = 3, for all times .

The ray through P is the curve X, = X,(¢) obtained as the solution to (8-2). Since
X;(t) = 0, it follows that the ray through P lies in the X; X,-plane. Also since Ny(¢) = 0,
the unit normal to the front at X ,(¢) lies in this plane. Then, since the X X,-plane contains
the centre of the sphere, it follows that the ray through P lies in a diametral plane.

The above result indicates that it suffices to consider only four of the six equations (e.g.
4 = 1,2) of the system (8-2) in order to describe a particular ray. Then, by specifying the
orientation of X appropriately, the position vector to a point on a ray is of the form, for
example, {X,(t), X,(¢), 0} and the unit normal vector at this point is {NV,(t), N,(¢), 0}. Thus,
in general, only two spatial variables (e.g. X;, X,) are required to describe a ray.

A further simplification can be made by taking advantage of the underlying spherical
and radial symmetry of the equilibrium sphere B.

1 Since the right-hand members of (8-2) do not depend upon ¢ explicitly, the choice of the initial instant
is arbitrary.
I Recall that the origin of X is at the centre of the spherical body.


http://rsta.royalsocietypublishing.org/

A

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
,',/ A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SEISMIC WAVE PROPAGATION 635

Let X,(¢) and N,(#) be solutions of the system (8.2). Recalling that J, = X /R, it follows
that the quantities {2 and R in (8-3) are known functions of £. On the other hand, differenti-
ating R and Q as they appear in (8-3) yields.

d& _ ; dX,
de " de?
dQ_ ,dN, 1, dX, QdR &0
i’ St
TR G R A
Substitution from (8-2) into (8-6) yields the two equations
dR _ QC,+C+X
dt 7V D ’
(87)

a == ) o (M) )

Considering (8-7) as a system of equations for R and QF, appropriate initial conditions
are R(0), the radial distance to a point P on the wave front at ¢ = 0, and Q(0), the inclination
of the unit normal vector to the radial direction at that point. The solution to (8:7) then
gives R and €2 for the point under consideration for subsequent times ¢. In itself this result
does not provide a complete spatial description of a ray, although such a description can be
obtained from it.

Ficure 2. The geometry of a ray.

A ray PQ passing through P is shown in figure 2. AB is a portion of the wave front
through P. Let 0 be the polar angle measured from OP to a general point on the ray and
let s denote distance measured along the ray. '

We assume that R and Q are known functions of ¢ which satisfy (8:7) and initial conditions
appropriate to the point P. A complete spatial description of the ray is obtained if the
dependence of ¢ on ¢ is specified (R(¢) being the other spatial variable).

T Werecall that D, X, o, C, and C, are functions of R and that Vis a function of R and € given by (8-4).


http://rsta.royalsocietypublishing.org/

A A

|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

J

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

636 K. N. SAWYERS AND R. S. RIVLIN
Since (ds/d¢)? = (dX,/dt) (dX,/dt), we have, from (8-2)1,‘
ds\ 2 Coto 2Oyt Ci4+-2—0 o (Cy2— 0) )
() = el (P 7) Fooe iyt ST e (), (8:8)

Also, the equation for arc length in polar coordinates is

(@) = ((iljf) R () (89)

Eliminating (ds/dt)? from equations (8-8) and (8:9), together with (8-7),, we find

(d6)2 1—C)? (Qﬂ_g)?

di) = R2V2 D (8'10)

From (8-4) and the fact that R(¢) and Q(¢) are assumed known, we note that V is a known
function of ¢. Then from (8:10)

t Cyto

00 =) =pv

(1—Q2)td (8:11)
Hence, a complete description of rays is obtainable if the solution to the system (8:7) is
known.

9. THE SOLUTION FOR TRANSVERSE WAVES AND RAY GEOMETRY

We introduce the notation
C = (Cy+0)/R?D, ¢= (C,+2—0)/R*D (9-1)
and rewrite equations (8-7) in the form

dR QR?

a =y et
a0 RO (g .
dt 2V )
It is a straight-forward matter to verify that (2 given by
ki (93
where o2 is a constant, satisfies the system of equations (9-2).
From (8-4) and (9-1) we have V2 — R2(C+Q%). (9-4)
Since (cf. (8-3)) Qis the inner product of two unit vectors, we must have
0< Q2«1 (9:5)

With (9-5) it follows from (9-4) that V2is positive for all admissible values of Q?if and only if
C>0 and C+c¢>0. (9-6)

From (7-24) and (9-1) we have
= R>C, v}= R?(C+v¢), (9°7)
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SEISMIC WAVE PROPAGATION 637

and, accordingly, v and 22 are positive] if and only if the inequalities (9-6) hold. Henceforth
we assume the inequalities (9-6) are valid.

As indicated in (9-5), Q2 must satisfy certain inequalities. These inequalities impose
restrictions on the value of the integration constant, a2, appearing in (9-3). We shall now
determine these restrictions, basing our argument on the fact that C'and ¢ must satisfy (9-6).

If Q2 =1, (9-3) yields C+¢ = 0 if @2 is finite. This violates (9-6),. Conversely, dividing
both numerator and denominator of (9-3) by a? and then letting a2 00, we obtain Q2 = 1.
Hence, Q2 = 1 if and only if 2 = c0. We need now consider only finite values of «? and the

inequalities 0< Q2 <1 (9-8)
A necessary and sufficient condition that 22, given by (9-3), satisfies (9-8) is
a?>=C. (99)

To prove this we first assume (9-3) satisfies (9-8) but that (9-9) does not hold. Then
a?—C < 0, and, since 2 > 0, it follows from (8-3) that a?+¢ < 0. Thus, both numerator
and denominator in (9-3) are negative. This fact together with the requirement that (2 < 1
yields C+¢ < 0, in violation of (9-6). We conclude that a? must satisfy (9-9). Conversely,
suppose that (9-9) holds. There are two cases to consider: (1) ¢ = 0; and (2) ¢ < 0. In case 1,
(9-9) and (9-6) show that a®?+¢ > 0, a>—C > 0 and a2 > 0. These considerations lead to the
following sequence of inequalities
a?—C _a?—C _a?

0< X =
T aldc o al o2

L
which, with (9-3), is equivalent to (9-8). For case 2 we write ¢ = —|¢|, and (9-9) and (9-6)
yield a2 = C > [¢| > 0. Also, 0 < a?—C < a2— |¢|. With these, we have

?—C  o?2—C _a’—|c| _
0< a2—le|  at4c Tat—|¢| 1,

and once again (9-8) is satisfied. This completes the proof.
From the discussion above, with co > «? > C, we see that Q given by (cf. (9-3))
a2 — O\
el
is a real-valued function which satisfies the inequalities —1 < Q < 1. From (9-9) and (9-6)
we note that a? > 0. Introducing (9-10) into (9-4) yields

. C+c\?
V—-Ra(m) : (9-11)
where we have taken a = +,/a2. Substitution from (9-10) and (9-11) into (9-2), gives the
differential equation for R dR R

Qz:t( (9-10)

— == Y (2—C)F .
I =13 (C+c)® (a2—C)2. (9-12)
In the particular case when a2 =00, we have Q =41, and substitution from (9-4) into
(9-2), yields
l %!; =+ R(C+o)k. (9-13)

T See the footnote in §7 (iii), p. 629.
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638 K. N. SAWYERS AND R. S. RIVLIN

It is clear that equations (9-12) and (9-13) can be solved for R = R(¢) only if the forms of
C and ¢ as functions of R are specified. Short of this, some information regarding ray
geometry can be obtained from (9-10) and (9-12) directly. ‘

In § 8 it was pointed out that the curve X, (t), obtained as the solution to the system (8-2),
is a ray associated with a transverse wave front. Letting U denote the speed of propagation
of the front along the ray, we have

U = {(dX,/dt) (dX,/dt)}*. (9-14)
The unit vector tangent to the ray in the direction of propagation is

T,=U"1'dX,/dt. (9-15)
From (8-2), and (9-14),

1 {({Cy+40)\? 2Cot o CytZ—0 |, (Co+E—a\2? )
U"V{(” D ) +2Q D D +Q ( ~D——~) } . (9-16)
Substitution from (9-10) and (9-11) into (9-16), with (9-1), yields
U = (Rfa) {a2(C+c) —Ce}. (9-17)

It is easily shown that the quantity inside the radical in (9-17) is positive when ¢, C and ¢
satisty (9-6) and (9-9).
A ray is said to be descending (ascending) if and only if the sign of J, T} is strictly negative
(positive). From (8:2); and (9:15), with (9-1), we have
STy = (RVU) (C+0) Q, (9-18)
where V and U are given by (9-11) and (9:17), respectively. Since (cf. (9-6),) (C+¢) > 0, it

follows from (9-18) that a ray is descending (ascending) if and only if Q < 0 (Q > 0).
Substitution from (9-10) and (9-11) into (8-11), and use of (9-1), yields the expression

00) = f :Cdt. (9-19)

From the discussion in § 8 we see that the solution R(t) of (9-12) and 0(¢), given by (9-19),
together, suffice to determine a ray through any point P of the body B. A particular ray is
obtained provided the value of 2 at P is given. Letting R(0) and €(0) denote the values of
R and Qat P, (9-10) yields

o= (C(R(O)) +02(0) C(R(O))}‘}2
1—2(0) '
Thus, « is determined in terms of the initial values of R and Q.
The parameter o, however, has a significance which is not apparent in (9-20). For con-
sider a ray whose deepest point of penetration is to the radius R = R;. At such a ‘lowest
point’ R(t) has a minimum and dR/d¢ = 0. Hence, from (9-12),

where the suffix L indicates that the quantity is evaluated at radius R,, i.e. C;, = C(R,).

With (9-21), (9-10) shows that 2, = 0. Thus, at a lowest point on a ray the wave normal
vector N, is perpendicular to the radial direction J,. From (9-12), with (9-21) we have

(d2R[de?), = — 3R (1 +¢,/Cp) {C'} (9-22)

(9-20)
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From (9-6), it follows that the quantity (14-¢,/C;) is positive. It then follows from (9-22)
that for the particular ray under consideration, R(¢) has a true minimum if and only if

{Ch<o. (9-23)
From (9-7),, C = (v5/R)?, and we have C’ = 2(v3/R) (v5/R)’. Since v4/R is positive, a form
equlvalent to (9 3) {(vs/R),}L < 0. (9.24)

Thus, whether R(¢) for a particular ray attains a true minimum is determined solely by the
behaviour of the principal transverse wave speed v;. We say that a ray is regular if and only if
R has a true minimum on the ray. '

Consider now the situation where dR/df= 0 at some radius Ry, say, and where
{C"}y > 0. From (9-12) we have, by analogy with (9-21) and (9-22),

o= /Cy, }

(d2R/d#),, < 0 (9:25)

In this case R(¢) has a true maximum and the corresponding ray never penetrates above
the ‘highest’ radius R = Ry. With (9-25),, (9-10) shows that Q5 = 0. Whether the situation
described by (9-25), is realized depends only on the behaviour of C.

From the discussion in this section we see that the description of a ray requires that the
lower (—) {upper (+)} signs in (9-10) and (9-12) be used on the descending {ascending}
portions. Both parts join continuously at the lowest (or highest) points since at such points,
Q=0 and dR/dt = 0.

Whereas the behaviour of C determines certain general properties of rays, the form of ¢
governs the orientation of the vectors 7, and N, relative to the radial direction J, at each
point along a ray. Recalling that Q= J,N,, (9-18), with (9-11) and (9-17), yields

Ty = G (9-26)

At the turning points of a ray, i.e. where dR/d¢ = 0, (9-10), (9-12) and (9-18) show that
J, T, = J;N, = 0, regardless of the value of ¢. Let P be a point on a ray other than a turning
point. Let C and ¢ in (9-26) be evaluated at P. From (9-26) it follows that the relations

2= i (@+0) (Cto) o :
(J,T)?2= (J,N,)? are equivalent to 2(C+0)—Cs = 1. (9-27)
In turn, we shall prove that the relations
2
%-(_g,—ﬁz()cj_—_—l_gg =1 are equivalent to ¢=0. (9-28)
We note that a*(C+¢)—Cc = (C+c) (a2—C)+C2 > 0.

Thus, the inequalities on the left-hand side of (9-28) imply
¢c(2C+c) =

1 Ifit should happen that ¢’ = 0 at R = Ry, it can be shown from (9-12) and (9-21) that (d"R/d¢"), = 0
for all # > 1 and, hence, that the corresponding solution to (9-12) is R(¢) = R;.

79 VoL. 263. A.
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640 K. N. SAWYERS AND R. S. RIVLIN
Since from (9-6), 2C+¢ > 0, this implies ¢ = 0. Conversely,

(#2+¢) (C+c)

lf c = 0, then 062(0;[—5) ——«CE == 1,

. (@*4c) (C+c) _ (e®+c) (C+e)  a*+e

if ¢>0, then 2(C¢)—Ce > 20C+e) @ > 1;
. (@*+¢) (C+c) _ (o®+¢) (Ct+c)  a*+o

if ¢< 0, then a2(0+c)——Cc< 20+ = @ < 1.

This completes the proof of the statements in (9-28).
With (9-28), (9-27) yields the result that the relations
(J,T)2= (J,N,)? areequivalentto ¢=0. (9-29)

From (9-18) we have that both J, 7, and J, N, (= Q) are negative on the descending portion
of a ray and positive on the ascending part. This fact, together with (9-29) determines the
relative orientation of 7, N, and J, at points along a ray.

From (9-12) we have dR

o
t=
YR CT @O

(9-30)

where df is the time required for a disturbance to propagate along a ray between the radii
R and R+4dR. Let T denote the total time required for propagation along a ray from
radius R to the lowest radius R; and back to R, where R > R;. On the descending(ascending)
portion, dR is negative (positive) and (9-30) yields

r dR
T—29 f : :
“) p R(CFoFa2—C)

(9-31)

Let A denote the total angle subtended, relative to the centre of B, by the two points defined
by the intersection of the sphere of radius R with the ray described above. From (9-19) and

0 = . 9:32
V=% et ot e—cp (9-32)

Integration of (9-32) over the interval (R,, R) yields

R CdR
A=2 o RIC T} (e O (9-33)
Since (cf. (9-21)) ¢ = ,/C,, the integrals (9-31) and (9-33) are improper at the lower limit R, .
A sufficient condition which ensures the convergence of these integrals is that C’ satisty
(9-23).

Another feature which can be determined from (9-12) and (9-19) is ray curvature. Let P
be a point in B. Choose X so that the X,-axis is along OP. Let X,(¢) and X,(¢) be the
coordinates of a point on a ray through P which lies in the X, X,-plane. Let « denote the
upward curvature of the ray. Then

— (S E A I SR+ (5 '
Kﬁ(dt az & e a) Ca) (9-34)
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SEISMIC WAVE PROPAGATION 641
We introduce polar coordinates (R, ¢) according to
X, =Rsinf, X,= Rcosf. (9-35)
Substitution from (9-35) into (9-34) yields

~ (R (5 )~ ) = (@) @] e

From (9-12) and (9-19) we have

dR 1
W LB erep @0y,
d R R ’ ’ ’
o = (22— C) [(CH+0) + BR(C +¢) ]~ 3R(C+0) €'
(9-37)
e
dt o’
d% _C'dR
de2 o dt”
Substituting from (9-37) into (9-36), we obtain
_ C@—O)[{Rl =C'(1+2/0)} = (C+] ~CHROU+0/C)+C) oo

R {e2(C+-¢) —Cc}t

We remark that the term in the denominator of (9-38) is real in view of (9-6) and (9-9).
Equation (9-38) gives the curvature at an arbitrary point along a ray in terms of C, ¢ and
the parameter «. Making use of (9-21), the curvature at a ‘lowest point’ of a ray is found to be

1 ’
Ky = —_W{%RLCL(l +¢,/Cr) +Cp}, (9-39)
JA

where, from (9-23), C; < 0. Accordingly, from (9-39) we see that «, is positive, zero, or
negative as ¢, is, respectively, greater than, equal to, or less than the quantity

20,
—G {R o +1).

10. APPLICATION TO SEISMOLOGY THEORY

In the terminology of seismologists the transverse waves considered in §§7 (iv), 8 and 9
are pure SH waves. For such waves, particle motion is horizontal and perpendicular to the
propagation direction. It was shown in §9 (cf. (9-24)) that the principal transverse wave
speed v3, given by (7:15), plays a central role in determining whether a ray reaches its
greatest depth below the surface at a particular radius. This condition is reminiscent of
a similar result from the classical isotropic theory of seismology. In that case the variation
of wave speed with radius can be determined from seismological observations directly. So
long as a condition corresponding to (9-24) holds, the observable relationship between
(cf. (9-31) and (9-33)) T and A at the Earth’s outer surface is sufficient to determine the
variation of wave speed with radius in the isotropic case.

79-2
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642 K. N. SAWYERS AND R. S. RIVLIN

That the classical method fails to yield correct conclusions if material anisotropy is
present was pointed out by Stoneley (1949). In this section we show how it fails for SH waves
in an anisotropic Earth. We restrict attention to rays whose end-points are on the outer
surface of the sphere B. We also assume that the relationship between 7" and A is known for

waves from surface disturbances which emerge at the outer surface and are identifiable as
SH fronts.

Ficure 3. The geometry of a ray and wave front at the Earth’s surface.

In figure 3 two neighbouring rays, PQ and PQ’ are shown. The points P, ) and Q' are
on the outer surface of B. An SH disturbance is regarded as originating at P. It is detected at
@ and Q" at times 7" and 7'4-d7T later, respectively. Angular distances between P and @
and P and @’ are denoted ¢ and A+dA, respectively. In figure 3, QK denotes the position
of the wave front at time 7. QK intersects the ray PQ’ at point M. Point M is chosen on QK
so that the angle QM@Q’ is a right angle.

Let f, denote the acute angle between J, and N, at Q. Then

cos fy = y, (10-1)
where the suffix 0 refers to the value at R = R;. From (9-10),

o (59, e
where « is the ray parameter for the ray PQ. Based on the geometry of figure 3 and the
discussion above we have MQ'JQQ’ = sinf,,

QQ' =R,dA. | o)

Also, since V is the speed of propagation of the wave front (i.e. the phase velocity) we have
that the time increment d 7" is given by

dT = MQ' [V, (10-4)

1 An alternate expression for d T could be written involving the ray velocity U. This isdT = M'Q’/U,
where (cf. 9:17) U, = {a?(Cy+c¢y) — Cyco}t Ry/ar. It is easily shown that the same final result (10-7) is obtained
by considering the geometry of triangle QAM’Q’ in figure 3.
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SEISMIC WAVE PROPAGATION 643
3
where, from (9-11), V, = Rya (Cg—l—co) . (10-5)
a“-¢,
From (10-3) and (10-4) we obtain
dT" R, . )
AT sinf,. _ (10-6)
Noting that sinf, = {1 —cos2f,}}, substitution from (10-1), (10-2) and (10-5) into (10-6)
yields dT 1
a—g = - (10'7)
Letting R; denote the radius to the lowest point on ray PQ, (9-21) and (9-7) yield
1 R, )
P (10-8)
From (10-7) and (10-8) it follows that
dT R
A ", (10-9)
From classical isotropic theory, the result corresponding to (10-9) is (see, for example,
Bullen 1963)
d_Y: = &, (10-10)
dA

where v, is the speed of propagation of shear (transverse) waves. Thus, with respect to the
propagation of SH waves, the role played by the principal transverse speed v4 is analogous
to that of v, in the isotropic case.

The technique which is generally used to determine the behaviour of wave speed with
radius in the isotropic case is the Herglotz—Wiechert method. The starting point in the
derivation of this method is the expression for A, the total angle subtended by the end-points
of a ray. For a ray whose end-points are on the outer surface of the sphere B, (9-33) yields

Ro CdR
& R(C+o)t (2—C)F

where « is given by (10-8). Adopting the notation of Bullen (1963) we introduce p and 7
defined by

A=

(10-11)

p=1la, n=Rlv, (10-12)
From (9-7), and (10-12), n=C1 (10-13)
Introducing (10-12), and (10-13) into (10-11) we obtain

pr,,R (14¢/C) %(,7 pz)g’ (10-14)

where, from (10-12), and (10-8), p=1n. (10-15)

Equation (10-14) is, apart from the factor (1+¢/C)?, identical with Bullen’s (1963) equa-
tion (7-8). From (9-6), it is seen that this factor is strictly positive for all R. Hence, the only
singularity of the integrand occurs when R = R, (i.e. when p = 7).
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644 K. N. SAWYERS AND R. S. RIVLIN

An essential requirement in deriving the desired result from (10-14) is that y be a monotone
increasing function of R over the interval of integration [R;, R,]. In particular, this means

that 7= (Rlog);, > 0. (10-16)

Since (R[v5)" = — (R[v4)? (v3/R)’, (10-16) is equivalent to (9-24).
Details of the steps involved in proceeding from (10-14) to the final expression

fAcosh~1 (/) dA — nﬁ"%? (14¢/C)~ (10-17)
0 R

are entirely analogous to those given by Bullen (1963, Chapter 7), and will not be described
here. In (10-17) Ais a fixed angle, Ris the radius to the lowest point on a ray which subtends
a total angle A, p is a known function of A given by (cf. (10-7) and (10-12))

. . p=dT/dA, (10-18)
and p = p(A).

In the classical isotropic case, the expression corresponding to (10-17) is (Bullen (1963))

A A RodR
f cosh™1 (pfp)da = [ 'S5, (10-19)
0 R
in which A, ﬁ, p and ) have precisely the same meanings as above.
With (10-18), the left members of (10-17) and (10-19) can be evaluated. The result is a
known number £(A), say, where

kA = f " cosh1 (/) dA. (10-20)
0
If the material is isotropic so that (10-19) applies, we obtain, with (10-20),
E(A) = mln (Ry/R). (10-21)
From (10-21) R = R,exp{—k(A)/m}, (10-22)
5 R
and from (10-10), v (R) = - — (10-23)

(ATJAAT, &
With R given by (10-22), equation (10-23) yields the value of v, at R = R. In this way, by

choosing various values of A in (10-20), the variation of v, with R can be established in the
isotropic case.

From (9-7) we have (1-4¢/C)% = vyfu,, (10-24)
where, from (7-24), vy = {(Cy+0) D}, l (10-25)
Uy = {(C2+C4+2)/D}%~J

With (10-24) and (10-20), (10-17) becomes
N RodR
E(AY =7 | = (vsvy). (10-26)
R

Equation (10-26) indicates the manner in which the classical Herglotz—Wiechert method
breaks down if account is taken of material anisotropy of the Earth. For unless v, = v, the
result of integrating the right-hand number will not be 7ln (Ry/R) as in (10-21).
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SEISMIC WAVE PROPAGATION 645

In a special case it may happen that C,, 2 and ¢ are related by C,+2 = ¢. Then (10-25)
shows that v; = v; and the isotropic results (10-21), (10-22) and (10-23) apply. Under these
conditions the material appears isotropic with respect to the propagation of SH waves.

11. ApPENDIX 1. THE STRAIN-ENERGY FUNCTION

Let P be a generic material point of the body B and let W” denote the strain energy at P,
measured per unit volume of B.

In figure 4 is shown the fixed frame X and the particle P in B. The vector OP is in the
radial direction at P. We introduce an auxiliary rectangular frame X, with origin at O, such
that the X, axis is in the direction OP, the orientation of X being otherwise arbitrary. Let
Gy denote the components of the Cauchy—Green strain tensor relative to X for an arbitrary
deformation. For an elastic material, we have

WP = WP(Gy,). (11-1)

X3

X
X3

F1cure 4. The reference frame X and an auxiliary frame X.

The statement that the material at P is transversely isotropic with respect to the radial
direction means that W? in (11-1) must remain invariant under all transformations of X
which leave the X, direction unchanged. This condition leads to the requirement (Ericksen
& Rivlin (1954), Adkins (1955)) that W? depends on the components of G, only through
the five quantities I, (¢ =1, ..., 5) defined by

Iy = Gygy Iy =$(GggGrp— Gy Grx), 3= |Gy,l, L= Gy Iy = GGy (11°2)

Let ag,, denote the cosine of the angle between the Xy and X, axes. Then, ag,, satisfies
the orthogonality conditions

Axar@rar = Ok Oyr, = Oxp>  |ags| = £1. (11-3)

Denoting the components of the Gauchy—Green strain tensor in the fixed frame X by Gy,

we have
GKL = aypary Gy (11-4)

We note, from the definition of ag,, and J;, (see §2) that
= Iy (11-5)
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646 K. N. SAWYERS AND R. S. RIVLIN
Introducing the relations (11-4) into (11-2) and employing (11-3) and (11-5), we obtain

Il = GKK? Iz = %(GKKGLL_GKL GLK)) Is = IGKLl’}

(11-6)
14 = JKJLGKL> Is = JKJLGKMGML .

Since the body has spherical symmetry in its reference configuration B, the dependence
of the strain-energy function on P is replaced by an explicit dependence on the radial
distance R. Thus, in place of (11-1), we may write

WP =W(I,R) (¢=1,...,5)

where the I, are given by (11-6).

12. APPENDIX 2. SOME GENERAL GEOMETRICAL AND KINEMATICAL RESULTS

Since the method we employ, in this paper, to describe the propagation of waves is
material rather than spatial, it seems worthwhile to include a discussion showing the con-
nection between the two. The results derived in this appendix are not new. They can be
obtained directly from the general equations presented by Truesdell & Toupin (1960).

Let X, denote material coordinates, measured in a fixed rectangular frame X. Let
x; = x;(X,,t) be a motion, where x; are coordinates measured in X. Let I, and y, be the
material and spatial descriptions, respectively, of a wave; i.e.

Ft = {XAI(D(XA: t) = O}a

" sldet o, | e
where @ and ¢ are related by

DXy, 1) = §(x;(Xy, 1), ). (12-2)

The material unit normal vector and speed of propagation associated with T, are,

respectively,
PEETEY Ny=® /(@ (D k)

V= —0)(@ 0 )t 1)

The spatial unit normal vector and speed of displacement associated with y, are, respectively,

-8 )% By,

P Onyl \Oxy, Oxy,
1138 G\ (12-4)
v ()
We differentiate (12-2) with respect to ¢ and obtain
R B
@z%xi—kqﬁ. 4 (12-5)
With the aid of (12-3), and (12-4), we can write (12-5) in the form
a6 ap\* .
@50,V = (5 55) (=), (12:6)
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SEISMIC WAVE PROPAGATION 647
The quantity (x—#;n;) is the local speed of propagation. We set
V= u—x;n, (12-7)
. ob ob\*
and rewrite (12-6) as (@ 4D )V = (?x% _ﬁx%) v. (12-8)
Differentiation of (12-2) with respect to X, together with (12-3), and (12-4),, yields
b % g\ .
Ny(D xD ()" =n;%; 4 (@ ‘g‘p‘c;c) . (12-9)
From (12-8) and (12-9) there follows
NV = n;x; 4/v. (12-10)

Equation (12-10) gives, in compact form, the connexion between various geometrical and
kinematical quantities associated with material and spatial descriptions of a wave.
If the deformation x;(X,,¢) is regarded as a small deformation from the reference con-
figuration, we write, as in §4
g ; sasin®d, X feuy(X,f), (12:11)

where ¢ is a small constant. As above we let ® = 0 and ¢ = 0 be the material and spatial
descriptions of a wave. From (12-11) we have

0X | Oxp = 0,p—e6uy p. (12-12)
Differentiating the equation ®(X,, ) = ¢(x,, t) with respect to x; and using (12-12) yields
08| oxg = @, 3—eD, quy p. ' (12-13)

With the aid of (12-3); and (12-4),, we obtain from (12-13) that

o op\*
= (et (0,60 0" (5 22 (12:14)
Since 7z and N, are unit vectors, we have, from (12-14),
ap op\}
{Q’KQ?K ‘9%5%} = 1+6NANBUA,B. (12']5)
With the aid of (12-15) we obtain from (12-14)
np = Np+e{Ny Ny Nyuy ;— KUk, B} (12-16)
In place of (12-2) we write (cf. (12-11))
O(Xy, 1) = ¢(Xy+euy (X, 1), 1). (12-17)
Differentiating (12-17) with respect to ¢ yields
) a . .
b = Q%GUA‘HD- (12-18)
The linearized counterpart of (12:6) is obtained from (12-18) and (12-16). Thus,
ap ap\} .
V@50 = (50 55 =), (12:19)

8o VoL 263 A.
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648 K. N. SAWYERS AND R. S. RIVLIN

where V' and # have the same meanings as before. That is, V' is the material speed of propa-
gation and u is the spatial speed of displacement of the wave. As in (12-7),
V= uéedBNB (12-20)
is the local speed of propagation. From (12-15) and (12-19), with (12-20), we have
V{1 +eN; Npuy 5} = U:l
or V={1—eN,Nyuy phv.]
Equations (12:21) may be derived directly from (12-10) by using (12-11) and (12-16). From

(12-21) we note that the material and local speeds of propagation differ by a term of order ¢
for small deformations.

(12-21)

13. APPENDIX 3. THE MATERIAL DESCRIPTION OF SEISMIC WAVES

Our aim in this section is to derive a set of ordinary differential equations which describes
the propagation of seismic waves. These equations are

ax, v

di ~ N,

aN oV (131)
'&4 - (]VANB”A\AB)m:

where V' 1s the speed of propagation of a wave whose material unit normal vector is N,.

Before taking up this matter we shall show that the direction of energy propagation (i.e.
the ray direction) is parallel to the vector dV/dN,. Asin §5 let ®(X,,¢) = 0 be the material
description of an isolated acceleration wave. At a fixed particle X, we assume @ == 0 for all .
Then, the equation ® = 0 may be solved in the form

DX, t) =F(X,)—t=0. (13-2)
With the aid of (13-2), equations (5-1) and (5:2) become
Ny=W /(¥ ¥ )t
V=1](¥ ¥ ()%

We assume the displacement u, of § 4 is given in the form of a ‘generalized wave’, namely,

(13-3)

uy=b,f(4), (13-4)
where by=b,(Xy), l (13:5)
¢ =W (X)—1,)

and where b, and its derivatives are continuous, f and its first derivative are continuous and
the second derivative of f'is continuous except at ¢ = 0; i.e.

lim f"(d) = lim f"(—9), (13-6)
30 80
where a prime denotes differentiation with respect to the entire argument. We denote the
discontinuity of f” expressed in (13-6) by [f”]. From (13-4) and (13-5), with (13-3), it
follows that lug,ral = [/"] bK]VL]VA/Vzal (13-7)
[is] = [S"1 by J
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SEISMIC WAVE PROPAGATION 649
Substitution from (18-7) into (6-3) yields

(Saz0pxF Caprcr) [T Ny Ny VE = DLf"] by,
or, since [ f”] == 0 at the discontinuity,

(SAL83K+ CABKL) bKNLNA = DVsz- (13'8)
We multiply both sides of (13:8) by b, to obtain
DVszbB = bBbK(SAL33K+ CABKL) NLNA' (13'9)

Regarding (13:9) as a relation between V and N,, at a fixed particle X, differentiation of
this equation with respect to N, yields

aV 1 bgb
N, W@% (S42.05x+ Capxr) Ny- (13-10)

Also from (13-4) and (13-5), with (13-3), it follows that
Uk, = bK,Lf(¢) +be f1(9) NL/V)}
tip =—by f".
Substitution from (18-11) into (4-18) yields
Pa= €455 +6*(S4r05x+ Caprr) bx, b5 S
+62(S.0px+ Capxr) b b (N /V) (f1)% (13:12)

This is the energy flux vector for the deformation (13-4). Noting that f* = —df/d?, integra-
tion of (13-12) with respect to £, holding X, constant, yields

(13-11)

_wﬁA dé = €%(8s1 Opxt+ Cupxr) bp ox(NL/V) f—-oo (f')2ds, (18-13)
where we assume that f—0 as ¢-—>-+o00. Equation (13-13) gives the direction of energy
propagation. A comparison of (13-13) and (13-10) shows that V[N, is in this direction.

‘We now turn to the problem of deriving the system of equations (13-1). In § 6 it has been
shown that the speed of propagation of a seismic wave is given by one of equations (6-8).
From (6-8) and (6+9) we see that this speed, ¥, may be written as a homogeneous function
of the first degree in the components of the unit normal vector N,. Also, V" depends on the
material coordinates X,. To express this dependence and homogeneity explicitly, we write

V=TV({N;,X), (13-14)
where V satisfies the Euler condition
V = N(dV|oN,). (13-15)
Letting ®(X,,¢) = 0 denote the wave front, we define the functions N, and U by (cf. (51)
and (52) N, (Xppt) = /(@ @ D),
U(Xy 1) =~<i>/(<1>,K<I>,K>%.} b
On ® = 0 we have, of course, N,=N,,
o U:V,} (13-17)

80-2
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650 K. N. SAWYERS AND R. S. RIVLIN
Consider a point X, (¢) which moves with velocity d¢V/dN,. That is,
dX, Jdr o
a4 Y7 e 1
=77, (Tl 1, Ko (1318)
From (13-15), (13-17) and (13-18), we obtain
dX, )
N2 =V, (13-19)

so the point X, () remains on the wavefront. In the following we assume all functions which
depend on (X}, t) are evaluated at the argument (X, (¢),¢) where X,(¢) satisfies (13-18). In
particular, for any function f(Xg,t) we have

d dX;
) (13:20)

Differentiation of (13-16), with respect to ¢ and use of (13-17), leads to the expression

W (3N, N @;—lq—);} S, (13-21)
It will now be shown that 1 d O ,=-V, (13-22)
(©,,® p)tdt ’
From (13-16) and (13-17),
Ni,p= (D 5= NN @ 1)/ (@ @ p)%) ‘
U 5 =— (0 VN, @ )00 )b N
From (13-14), (13:16) and (13-17), we have
U(Xp,t) = V(N (Xpt), X,). (13-24)
Differentiation of (13-24) and use of (13-18) yields
U p= Ny 5(dXg/dt) +V . (13-25)
We eliminate U j from (13-23), and (13-25), make use of (13-23), and (13:19), and obtain
(@ xp(dXe/d) + D ) /(D D )t ==V ;. (13-26)
From (13-20) é%;i = ®,K3%+®,B. (13-27)

The result (13-22) follows from (13-26) and (13-27).
Substitution from (13-22) into (13-21) yields

dN,/dt = — (05— NNV 4, (13-28)
By regarding the function V appearing in (13-14) as being evaluated at the argument
X,(t), Ny(t), where X, and N, satisfy (13-18) and (13-28), we obtain the system of equations
(13:1). By the manner in which these equations were derived, the point X,(¢) moves with
the front and at this point the unit normal vector is N,(¢). The velocity dX,/d¢ is the ray
velocity. The solution X,,(¢) to (13-1) is the corresponding ray.
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SEISMIC WAVE PROPAGATION 651

14. ApPENDIX 4. THE CASE OF ISOTROPIC INITIAL STRESS

In the traditional treatment of many seismological problems it is customary to assume
the equilibrium state of stress is a hydrostatic pressure. For this reason it seems worthwhile
to include the specialization of certain results obtained in the main body of this paper to
cases where the initial stress is isotropic.

If the initial stress is isotropic, we replace equation (2-2) by

Ssp = S(R) dyp, (14-1)
and note that the results of § 2 apply provided we set
2=0=258 (say). (14-2)
Equations (2-8) and (2-10) are replaced by
= DG’} (14:3)
S(R,) = 0,

respectively.

If the material of the equilibrium sphere is transversely isotropic with respect to the radial
direction, then just as in §3 the strain energy function W depends on (cf. (3-8)), 1}, ..., Iyand
upon R. The dependence of I/ upon the 7, is restricted by the conditions (cf. (3-15))

§ = 2(W,+2Wy+W3),) (14-4)
0=2(W,+2i3). |

By making the substitution (14-2) in all equations of §§ 4-10, results which apply to the
present case are obtained directly. From (7-23) and (7-24) it follows that there are at most
four distinct principal wave speeds given by

V= D"1(C,+2C,+2C;+4C,+C5+3),
V3= D1(C,+2C,+8),

0} = 1§ = D(Cy+C,y+S5),

v = D1(C,+S),

(14+5)

where the C, are given by (4-11).
As in (9-1) we introduce C and ¢ defined by
C = (C,4-8)/R?D, &= C,/R*D. (14°6)

The equations for R and Q are identical in form with (9-2) with C and ¢ replaced by C and ¢,

respectively. In this case (cf. (9-3))
a?—C

2 .
»=" | (14:7)
where «2? must satisfy (cf. (9-9)) a? > C. (14-8)
The equation corresponding to (9-12) is
dR R —
—_ == —_ A % 2——-— % .
Pl (C+470)% (a2—C)%. (14-9)

8o0-3
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652 K. N. SAWYERS AND R. S. RIVLIN

The discussion in § 9 regarding ray geometry applies here also. The behaviour of C governs
the depth of penetration of a ray while the sign of ¢ determines the relative orientation of the
ray tangent vector and the wave normal vector with respect to the radial direction.
Results of §10 regarding the use of seismographical 7'—A data follows from (10-26).
Thus, '

kA) = ﬂf:)%? gél‘ (14-10)
where (cf. (145)) vy = {(C,+5)/D}, l (14-11)

v = {(Cat-Cy-5) D}
It follows from (14-10) that the condition of isotropic initial stress does not remove the
difficulty in applying the classical Herglotz—Wiechert method. According to (14-11), the
right-hand member of (14-10) reduces to #n1n (Ro/ﬁ) only if C, == 0, i.e. only if v, = v;. In
this regard see the discussion in § 7 (iv).

A comparison of the selected results shown in (14-4)—(14-11) with those of §§5-10
indicates that the only significant simplification arising from the assumption of isotropic
initial stress is in the reduction from five to four principal wave speeds. Qualitative aspects
of the propagation of SH waves are unchanged.

We finally point out that the case where material response is isotropic is included. Under

this condition W depends only upon I;, I, and I; given by (3-7) and, of course, upon R.
That is,

W=W({,l1,I,R). (14-12)

The dependence expressed by (14-12) is restricted by the requirement (cf. (14-4))
S — 2(W,-+ 20, - W5), | (1413)
where W, = %W(& 3,1, R). (14-14)

Results can be obtained immediately for the isotropic material by setting
WOl = W[, =0 and T=o=0§
in §§ 3-6. In particular, from (4+11), we have |
C;=C,=Cy;=0. (14-15)
Thus, from (6-6), the linear isotropic acoustic tensor is
4 Qpx = (Co+8) Opp+ (Cy+ Cy) Np Ny (14-16)
From (14-16) follows the well-known result that there are two squared wave speeds,
v}’;: D~1(Cl+202+S),} (14:17)
v = D~1(Cy+9).

The analysis of the motion of wave fronts and their associated rays givenin §§ 8 and 9 applies
to the completely isotropic case. Thus, for SH waves we have from (9-10) and (9-12), with
(9-1), (14-2), (14-15) and (14-17), |

Q=+ (1/0) (@2~ 2RA}, |

dR/dt = -+ (1/a) v, (02 —v2/R2)L. | (14-18)
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